New horizons - Decarbonisation within the steel industry for a sustainable future

metallurgical competence center

Coordinated by

Financially supported by

Federal Ministry Republic of Austria Labour and Economy

Republic of Austria Climate Action, Environment Energy, Mobility, Innovation and Technology

NEFI Konferenz Linz, 13.10.2022

Monika Häuselmann K1-MET GmbH, Leoben, Austria

metallurgical competence center

INTRODUCTION CO₂ EMISSIONS AND AMBITIOUS TARGETS

CO₂ emissions

Concentration trends in the atmosphere

Mauna Loa (Hawaii) holds the longest continuous record of direct atmospheric CO₂ measurements

1850

Global temperature change Warming strips

Global warming stripes relative to 1970 - 2000

Warming stripes represent the change in temperature as measured in each country over time

Each stripe or bar represents the temperature over a year

Global temperatures have increased by over 1.2 °C

0.3 0.0 2000 2021 1950 -0.3 -0.6

metallurgical competence center

0.6

Taking actions Climate targets

Environmental and climate change regulation

- Paris Agreement (2015) Max. global temperature increase of 2.0 (+1.5) °C at 2100 compared to levels before industrialization
- European Green Deal (2019) Zero net emissions of greenhouse gases by 2050
- Austrian government program (2020) 2030: 100% renewable electric energy 2040: climate neutrality

Industrial

Iron and steel industry

Steel production routes

Primary routes

Conversion of iron ore into crude steel

- Blast furnace basic oxygen furnace (BF-BOF)
- Smelting reduction BOF
- Direct reduction electric arc furnace (DR-EAF)
- Potential use of H₂ as reducing agent replacing natural gas

Secondary route

Recycling of iron and steel scrap

EAF

Reference: Stahlinstitut VDEh

metallurgical competence center

metallurgical competence center

PATHWAYS TOWARDS CO₂ NEUTRAL STEELMAKING CO₂ MITIGATION TECHNOLOGIES

CO₂ mitigation technologies 3 Pathways

metallurgical competence center

SMART CARBON USAGE (+CCS)

Process modifications designed to be integrated in conventional steel plants

CO2

Process integration

- Iron bath reactor smelting reduction
- Gas injection into the blast furnace
- Alternative carbon sources
- Increased scrap usage

Carbon capture and usage

Carbon oxide conversion

CO₂ mitigation technologies 3 Pathways

SMART CARBON USAGE (+CCS)

Process modifications designed to be integrated in conventional steel plants

 CO_2

Process integration

- Iron bath reactor smelting reduction
- Gas injection into the blast furnace
- Alternative carbon sources
- Increased scrap usage

Carbon capture and usage

Carbon oxide conversion

CARBON DIRECT AVOIDANCE

Production of steel from virgin iron ores without direct release of carbon emissions by replacing of current fossil fuels with renewable electricity or green hydrogen produced from renewable electricity

Hydrogen-based metallurgy

- Hydrogen-based direct reduction
- Hydrogen plasma smelting reduction

Electricity-based metallurgy

- Alkaline iron electrolysis
- Molten oxide electrolysis

CIRCULAR ECONOMY

Circular economy as overlapping pathway focusing on increased material recovery from residues and scrap recycling

SMART CARBON USAGE (+CCS)

Process modifications designed to be integrated in conventional steel plants

 CO_2

Process integration

- Iron bath reactor smelting reduction
- Gas injection into the blast furnace
- Alternative carbon sources
- Increased scrap usage

Carbon capture and usage

Carbon oxide conversion

CARBON DIRECT AVOIDANCE

Production of steel from virgin iron ores without direct release of carbon emissions by replacing of current fossil fuels with renewable electricity or green hydrogen produced from renewable electricity

Hydrogen-based metallurgy

- Hydrogen-based direct reduction
- Hydrogen plasma smelting reduction

Electricity-based metallurgy

- Alkaline iron electrolysis
- Molten oxide electrolysis

K1-MET GmbH | 18.10.2022 | 11

Sustainable steelmaking

Iron ore qualities

Reference: RtM (2021)

Global iron ore market is dominated by low and medium grade iron ores

The replacement of blast furnace – basic oxygen furnace process route (BF-BOF) by direct reduction – electric arc furnace (DR-EAF) process route requires development of an adapted metallurgical concept for steelmaking from low/medium grades

Transformation scenario

Electric energy production in Austria

metallurgical competence center

TWh

Electric energy demand for 6.0 Mt steel/year

250 69 fossil Oil NG 56 200 renewable Biomass Coal 150 -42 Wind Hydroelectric/Storage 100 -28 50 Hydroelectric/River --- 14 0 0 2005 2007 2009 2011 2013 2015 2017 2019

Waste

PJ

Downstream processes 7.5 TWh_{el}

Hydrogen production H2FUTURE

metallurgical competence center

SIEMENS energy

One of the biggest PEM electrolyser units in the world with 6 MW power and 1.200 m³/h H₂ production at voestalpine Linz for full scale demonstration of H₂ production and grid balancing

- Ambitious efficiency target at nominal power
- W_{el} = 48 51 kWh/kg
- h_{System} = 82% 77%

Reference: voestalpine

Dynamic response suitable for all kind of grid services

Breakthrough technology

Hydrogen plasma smelting reduction

metallurgical competence center

SuSteel – Sustainable Steelmaking

- Direct steelmaking of iron ores with hydrogen plasma smelting reduction
- Avoidance of CO₂ emissions
- Testing facility at the Donawitz site in Styria

Demo plant is located at voestalpine Donawitz site

Partner

- voestalpine
- K1-MET
- Montanuniversität Leoben

voestalpine

Breakthrough technology

Hydrogen-based fine ore reduction

metallurgical competence center

HYFOR – Hydrogen based fine ore reduction

- Direct reduction of magnetite/hematite iron ores in fluidized bed with hydrogen as main reducing gas (metallization degree of 97%)
- No agglomeration process required
- Pilot plant in Donawitz

Partner

- voestalpine
- Primetals Technologies
- Montanuniversität Leoben

Reference: voestalpine, Primetals

metallurgical competence center

WHAT'S NEXT SUMMARY AND CONCLUSION

Roadmap towards climate neutral steelmaking

Summary and conclusion

metallurgical competence center

Austria's steel industry is focusing to gradually increase the share of green electricity and green hydrogen in steel production in order to achieve climate-neutral and sustainable production by 2050

Hybrid technology with electric arc furnace process additional to blast furnace – direct reduction – basic oxygen furnace production at integrated sites until 2030

Up to 30% CO₂ reduction independent from green hydrogen and high potential for further CO₂ decrease as soon as green hydrogen is economical available

New horizons - Decarbonisation within the steel industry for a sustainable future

metallurgical competence center

Coordinated by

Financially supported by

Eederal Ministry 💳 Federal Ministry Republic of Austria Labour and Economy

Republic of Austria Climate Action. En Energy, Mobility,

NEFI Konferenz Linz, 13.10.2022

Monika Häuselmann K1-MET GmbH, Leoben, Austria

